POTENTIAL NEUROLEPTICS OF THE ORTHOPRAMIDE SERIES; SYNTHESIS OF N-(3-(TERT.AMINO)PROPYL)-5-SULFAMOYL-2--METHOXYBENZAMIDES

Vladimír Valenta, Marie Vlková, Jiří Holubek, Emil Svátek, Jiřina
Metyšová and Miroslav Protiva

Research Institute for Pharmacy and Biochemistry, 13060 Prague 3

Received June 8, 1989
Accepted June 21, 1989

Abstract

Heating ethyl 5 -sulfamoyl-2-methoxybenzoate with a series of twelve 3-(tert.amino)propylamines (IIIa-IIIl) afforded the title compounds IIa-IIl which were transformed to salts and subjected to pharmacological screening as potential neuroleptics of the sulpiride series. Only compounds IId (hydrogen oxalate, VÚFB-15 453) and IIg (methanesulfonate, VÚFB-15 397) showed indications of the desired psychotropic activity.

Some time ago, several N -substituted 5-sulfamoyl-2-methoxybenzamides were described ${ }^{1}$ as analogues of the atypical neuroleptic agent "sulpiride" (I) (refs ${ }^{2,3}$). Two further analogues of a similar type were described earlier in patents ${ }^{4}$. The present paper represents a continuation of our earlier investigation ${ }^{1}$ and deals with the title compounds $I I a-I I l$.

1
Compounds IIa $-I I l$ were obtained by heating equimolecular quantities of ethyl 5-sulfamoyl-2-methoxybenzoate ${ }^{1,5}$ and the diamines IIIa-IIIl to $100^{\circ} \mathrm{C}$ (general method). Crystallization of the solidified melts from ethanol or methanol afforded the crystalline bases IIa-IIl which were characterized by spectra. They were transformed to crystalline salts (hydrochlorides, methanesulfonates etc.) which were used for pharmacological testing. Out of the starting diamines III the following were described in the literature and have now been prepared by the methods described: IIIa (ref. ${ }^{6}$), IIIb (ref. ${ }^{7}$), IIIc (ref. ${ }^{8}$), IIId (ref. ${ }^{9}$), IIIe (ref. ${ }^{9}$), and IIIf (ref. ${ }^{9}$). Diamine IIIg was obtained from the nitrile $I V g$ (ref. ${ }^{10}$) by reduction with lithium aluminium hydride in ether (it was prepared earlier ${ }^{11}$ by hydrogenation of IVg on

Raney nickel). Synthesis of IIIh started from 1-(4-ethylphenyl)piperazine (cf. also ref. ${ }^{12}$) which was obtained by heating a mixture of hydrochlorides of 4-ethylaniline and diethanolamine to $200-220^{\circ} \mathrm{C}$ (method ${ }^{13}$). Addition reaction of 1 -(4-ethylphenyl)piperazine to acrylonitrile (method ${ }^{10}$) gave $I V h$ which was reduced with lithium aluminium hydride to IIIh; the oily base was characterized by the ${ }^{1} \mathrm{H}$ NMR spectrum and was transformed to crystalline monopicrate and trihydrochloride, Diamine $I I I i$ was prepared by similar reduction of IVi (ref. ${ }^{10}$); synthesis if IIIi by a different method was mentioned in a patent ${ }^{14}$. 1-(2-Methoxyphenyl)piperazine was prepared by reaction of 2 -anisidine with bis(2-chloroethyl)amine hydrochloride ${ }^{15,16}$ in refluxing 1 -butanol in the presence of potassium carbonate (a similar synthesis from bis(2-bromoethyl)amine hydrobromide in methanol was described ${ }^{17}$). The following addition to acrylonitrile afforded $I V j$ which was earlier prepared by alkylation with 3 -chloropropionitrile ${ }^{18}$. Reduction of $I V j$ with lithium aluminium hydride gave $I I I j$ which had been earlier prepared by different methods ${ }^{14,18}$. 1-(3--Methoxyphenyl)piperazine was prepared from 3-anisidine similarly like the 2--methoxy analogue (cf. also ref. ${ }^{19}$) and was added to acrylonitrile to give $I V k$ (cf. ref. ${ }^{18}$). Similar reduction gave $I I I k$ (cf. ref. ${ }^{18}$), characterized as the trihydrochloride. The synthesis of IIIl (cf. ref. ${ }^{11}$) proceeded similarly via 1-(4-methoxyphenyl)piperazine (cf. ref. ${ }^{20}$) and via $I V l$ (cf. ref. ${ }^{11}$). Our synthesis of the four N -monosubstituted piperazines, further $I V h, I V j, I V k, I V l$, and $I I I g-I I I l$ is being described in the Experimental. The final compounds $I I$, prepared by the mentioned general method, are assembled in Table I with the usual experimental data. The preparation of IIe is described in the Experimental as an example. The spectra of compounds $I I$ are assembled in Table II.

II

III

IV

In formulae $\\|-N$: $a, \mathrm{X}=$	g, $X=\mathrm{N}\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
b, $\mathrm{X}=\mathrm{CH}_{2}$	h, $X=N\left(4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
c. $X=0$	i, $\mathrm{X}=\mathrm{N}\left(3-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$
d, $\mathrm{X}=\mathrm{NCH}_{3}$	j, $\mathrm{X}=\mathrm{N}\left(2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$
e, $X=\mathrm{NC}_{6} \mathrm{H}_{5}$	$k, X=\mathrm{N}\left(3-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$
$f, X=\mathrm{N}\left(2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$	1, $X=N\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$

Table I
N-(3-(Tert.amino)propyl)-5-sulfanoyl-2-methoxybenzamides $I I$

$\begin{gathered} \text { Compound }^{a} \\ \text { Yield, } \% \end{gathered}$	$\text { M.p., }{ }^{\circ} \mathbf{C}$ Solvent	Formula M.w.	Calculated/Found				
			\% C	\% H	\% Cl	\% N	\% S
IIa	156-159	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	$52 \cdot 76$	$6 \cdot 79$	-	$12 \cdot 31$	9•39
34	ethanol-toluene	$341 \cdot 4$	$52 \cdot 52$	$7 \cdot 09$	-	$12 \cdot 09$	9•19
$I I a-\mathrm{HCl}$	241-244	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}$	$47 \cdot 67$	$6 \cdot 40$	$9 \cdot 38$	$11 \cdot 12$	8.49
	ethanol	$377 \cdot 9$	$47 \cdot 33$	$6 \cdot 39$	$9 \cdot 24$	11.21	8.69
IIb	173-175	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	54.06	$7 \cdot 09$	-	11.82	9.02
60	ethanol	$355 \cdot 5$	53.93	$7 \cdot 15$	-	11.79	8.88
$I I b-\mathrm{HCl}$	215.5-216.5	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}$	49.03	$6 \cdot 69$	9.05	10.72	$8 \cdot 18$
	ethanol-acetone	391.9	48.99	$6 \cdot 73$	9.07	$10 \cdot 56$	$8 \cdot 19$
IIC	153-157	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$	50.40	6.49	-	11.76	8.97
48	ethanol	$357 \cdot 4$	$50 \cdot 55$	$6 \cdot 50$	-	11.51	$8 \cdot 92$
IIc-HFU	194-195•5	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$	49.14	6.07	-	$10 \cdot 11$	$7 \cdot 72$
	ethanol	$\begin{gathered} +0.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \\ 415 \cdot 5 \end{gathered}$	$48 \cdot 83$	$6 \cdot 11$	-	$10 \cdot 09$	$8 \cdot 12$
IId-HH	168-170	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	$50 \cdot 64$	$7 \cdot 17$	-	14.76	$8 \cdot 45$
$89^{\text {b }}$	ethanol-acetone	$\begin{array}{r} +0.5 \mathrm{H}_{2} \mathrm{O} \\ 379.5 \end{array}$	50.54	$7 \cdot 19$	-	14.42	$8 \cdot 34$
IId-BHO-HH	190-191	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}$	$42 \cdot 93$	$5 \cdot 58$	-	10.01	$5 \cdot 73$
	dimethylformamide- -ethanol-acetone	$\begin{array}{r} +0.5 \mathrm{H}_{2} \mathrm{O} \\ 559.6 \end{array}$	$43 \cdot 07$	$5 \cdot 71$	-	$10 \cdot 29$	$5 \cdot 64$
IIe ${ }^{\text {c }}$	220-221	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	58.31	$6 \cdot 52$	-	$12 \cdot 95$	7.41
63	dimethylformamide--ethanol	$432 \cdot 5$	$58 \cdot 41$	$6 \cdot 69$	-	12.95	$7 \cdot 59$
IIe-MS	221-223	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}$	$49 \cdot 98$	6. 10	-	$10 \cdot 60$	$12 \cdot 13$
	ethanol-ether	$528 \cdot 6$	50.06	$6 \cdot 20$	-	$10 \cdot 66$	$12 \cdot 04$
IIf	194-196	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	$59 \cdot 17$	$6 \cdot 77$	-	12.55	$7 \cdot 18$
32	ethanol-toluene	$446 \cdot 6$	$59 \cdot 50$	$6 \cdot 79$	-	$12 \cdot 53$	$7 \cdot 36$
IIf -HCl	229-231	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}$	$54 \cdot 70$	$6 \cdot 47$	$7 \cdot 34$	11.60	$6 \cdot 64$
	ethanol	483.0	$54 \cdot 67$	$6 \cdot 52$	$7 \cdot 60$	11.66	$6 \cdot 80$
IIg	203-205	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	$59 \cdot 17$	$6 \cdot 77$	-	12.55	$7 \cdot 18$
51	ethanol-toluene	$446 \cdot 6$	59.07	$6 \cdot 79$	-	$12 \cdot 71$	$7 \cdot 50$
IIg-MS	221-223	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}$	50.90	$6 \cdot 31$	-	10.33	11.82
	ethanol	$542 \cdot 7$	$50 \cdot 50$	$6 \cdot 35$	-	$10 \cdot 59$	11.89
IIh	194	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	59.97	7.00	-	$12 \cdot 16$	6.96
50	dimethylformamide--ethanol	$460 \cdot 6$	$59 \cdot 83$	$7 \cdot 02$	-	12•10	$7 \cdot 17$

Table I
(Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound \({ }^{a}\)
Yield, \(\%\)} \& \multirow[t]{2}{*}{M.p., \({ }^{\circ} \mathrm{C}\) Solvent} \& \multirow[t]{2}{*}{Formula M.w.} \& \multicolumn{5}{|c|}{Calculated/Found} \\
\hline \& \& \& \% C \& \% H \& \% Cl \& \% N \& \% S \\
\hline \(I I^{\prime}\) - MS \& \[
\begin{gathered}
136-138 \\
\text { aqueous ethanol }
\end{gathered}
\] \& \[
\underset{556 \cdot 6}{\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}}
\] \& \[
\begin{aligned}
\& 51 \cdot 78 \\
\& 51 \cdot 53
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \cdot 52 \\
\& 6.66
\end{aligned}
\] \& \& \[
\begin{array}{r}
10.07 \\
9.64
\end{array}
\] \& \[
\begin{aligned}
\& 11.52 \\
\& 11.26
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& I I i \\
\& 50
\end{aligned}
\] \& \[
\begin{aligned}
\& \quad 219-220 \\
\& \text { dimethylformamide- } \\
\& \text {-ethanol }
\end{aligned}
\] \& \[
\underset{467 \cdot 0}{\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}}
\] \& \[
\begin{aligned}
\& 54 \cdot 01 \\
\& 54 \cdot 13
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \cdot 83 \\
\& 5 \cdot 87
\end{aligned}
\] \& \[
\begin{aligned}
\& 7.59 \\
\& 7.79
\end{aligned}
\] \& \[
\begin{aligned}
\& 12.00 \\
\& 11.81
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \cdot 87 \\
\& 6 \cdot 77
\end{aligned}
\] \\
\hline III-MS \& \[
\begin{aligned}
\& 212-214 \\
\& \text { ethanol-ether }
\end{aligned}
\] \& \[
\underset{563 \cdot 1}{\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}}
\] \& \[
\begin{aligned}
\& 46 \cdot 92 \\
\& 46 \cdot 58
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \cdot 55 \\
\& 5 \cdot 61
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \cdot 30 \\
\& 6 \cdot 54
\end{aligned}
\] \& \[
\begin{aligned}
\& 9.95 \\
\& 9 \cdot 65
\end{aligned}
\] \& \[
\begin{aligned}
\& 11 \cdot 39 \\
\& 11 \cdot 39
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& I I j \\
\& 52
\end{aligned}
\] \& \begin{tabular}{l}
\[
222-224
\] \\
dimethylformamide--methanol
\end{tabular} \& \[
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \\
462 \cdot 6
\end{gathered}
\] \& \(57 \cdot 12\)
\(56 \cdot 89\) \& \(6 \cdot 54\)
6.57 \& - \& \(12 \cdot 11\)
\(12 \cdot 18\) \& 6.93
\(7 \cdot 15\) \\
\hline \(I I j\)-MS \& \[
\begin{aligned}
\& 185-187 \\
\& \text { ethanol }
\end{aligned}
\] \& \[
\underset{558 \cdot 7}{\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}}
\] \& \[
\begin{aligned}
\& 49 \cdot 44 \\
\& 49 \cdot 72
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \cdot 13 \\
\& 6 \cdot 25
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 10 \cdot 03 \\
\& 10 \cdot 10
\end{aligned}
\] \& \[
\begin{aligned}
\& 11 \cdot 48 \\
\& 11 \cdot 28
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& I I k \\
\& 46
\end{aligned}
\] \& \[
\begin{aligned}
\& \quad 180-181 \cdot 5^{d} \\
\& \text { ethanol }
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \\
462 \cdot 6
\end{gathered}
\] \& \[
\begin{aligned}
\& 57 \cdot 12 \\
\& 57 \cdot 03
\end{aligned}
\] \& \(6 \cdot 54\)
6.67 \& - \& \& 6.93
7.03 \\
\hline \(I I k-\mathrm{MS}-\mathrm{HH}\) \& \[
\begin{aligned}
\& 174-176 \\
\& 95 \% \text { ethanol }
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2} \\
+0.5 \mathrm{H}_{2} \mathrm{O} \\
567.7
\end{gathered}
\] \& \[
\begin{aligned}
\& 48.66 \\
\& 48.33
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \cdot 21 \\
\& 6 \cdot 19
\end{aligned}
\] \& - \& 9.87

$9 \cdot 64$ \& $$
\begin{aligned}
& 11 \cdot 30 \\
& 11 \cdot 16
\end{aligned}
$$

\hline 111

25 \& | $217 \cdot 5-219$ |
| :--- |
| dimethylformamide--methanol | \& \[

$$
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \\
462 \cdot 6
\end{gathered}
$$
\] \& $57 \cdot 12$

$57 \cdot 29$ \& $6 \cdot 54$
$6 \cdot 60$ \& - \& $12 \cdot 11$
$12 \cdot 33$ \& $6 \cdot 93$
$7 \cdot 19$

\hline Ill-MS \& $$
\begin{aligned}
& 144-146 \\
& 95 \% \text { ethanol }
\end{aligned}
$$ \& \[

\underset{558 \cdot 7}{\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}}

\] \& \[

$$
\begin{aligned}
& 49 \cdot 44 \\
& 49 \cdot 68
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 \cdot 13 \\
& 6 \cdot 43
\end{aligned}
$$

\] \& \& \[

$$
\begin{array}{r}
10 \cdot 03 \\
9 \cdot 82
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 11 \cdot 48 \\
& 11.26
\end{aligned}
$$
\]

\hline
\end{tabular}

[^0]Compounds II $a-I I l$ (in the form of salts described in Table I) were subjected to a preliminary pharmacological screening. They were administered orally (unless otherwise stated) and the doses given were calculated per bases. Acute toxicity in mice, approximate values of LD_{50} in $\mathrm{mg} / \mathrm{kg}$: IIb 30 i.v.; IId, 15), i.v.; IIe, 125 i.v.; $I I g, 150$ i.v.; $I I i,>2500$. In the rotarod test in mice doses of $500 \mathrm{mg} / \mathrm{kg}$ were administered and per cent of animals responding by ataxia are given: IId, 20; IIg, 70; $I I h, 40 ; I I i, 30 ; I I j, 30$; the remaining compounds were inactive (for sulpiride (I), ED_{50} c. $500 \mathrm{mg} / \mathrm{kg}$). The same doses were administered in the test of inhibition of
the climbing behaviour of mice which was induced by apomorphine ($2 \mathrm{mg} / \mathrm{kg} \mathrm{s.c}$.): only IId and IIg showed activity comparable to that of sulpiride ($\mathrm{PD}_{50} 340 \mathrm{mg} / \mathrm{kg}$ (ref. ${ }^{3}$)), the other compounds were inactive. For estimating the influence on the adrenaline toxicity in mice, the doses of $250 \mathrm{mg} / \mathrm{kg}$ were administered (per cent of protected animals given): IIf, $100 ; I I g, 40 ; I I j, 50$; the other compounds were inactive. The same doses were used for establishing the influence on the lethal action of noradrenaline in rats (per cent of protected animals given): IIe, 70-100; IIf, $70-100 ; I I g, 70-100 ; I I j, 80 ; I I l, 30$; the other compounds were inactive. In conclusion, only compounds IId (hydrogen oxalate, VÚFB-15 453) and IIg (methanesulfonate, VUFB-15 397) showed indications of psychotropic activity of the neuroleptic type.

EXPERIMENTAL

The melting points of analytical samples were determined in the Kofler block and were not corrected. The samples were dried in vacuo of about 60 Pa over $\mathrm{P}_{2} \mathrm{O}_{5}$ at room temperature or at a suitably elevated temperature. UV spectra (in methanol, $\lambda_{\text {max }}(\log \varepsilon)$) were recorded at a Unicam SP 8000 spectrophotometer, the IR spectra (mostly in Nujol, v in cm^{-1}) were recorded with the Perkin-Elmer 298 spectrophotometer, and ${ }^{1} \mathrm{H}$ NMR spectra (in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ unless otherwise stated, δ in ppm, J in Hz) with a Tesla BS $487 \mathrm{C}(80 \mathrm{MHz})$ spectrometer. The homogeneity of the substances and composition of the mixtures were checked by thin-layer chromatography (TLC) on silica gel (Silufol). The extracts were dried with $\mathrm{MgSO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under reduced pressure on a rotary evaporator.

1-(4-Ethylphenyl)piperazine

A mixture of 85 g 4-ethylaniline, 74 g diethanolamine and 140 g hydrochloric acid was heated and water was distilled off. The residue was then heated for 4 h to $200^{\circ} \mathrm{C}$, for 1 h to $200-220^{\circ} \mathrm{C}$ and for 2.5 h to $235^{\circ} \mathrm{C}$ (bath temperature). The melt was cooled to $60^{\circ} \mathrm{C}$ and was slowly treated under external cooling with a solution of 65 g NaOH in 100 ml water. The separated product was extracted with benzene, the extract was washed with $5 \mathrm{~m}-\mathrm{NaOH}$ and water, and processed by distillation; $63 \cdot 8 \mathrm{~g}(48 \%)$, b.p. $160-163^{\circ} \mathrm{C} / 1 \cdot 5 \mathrm{kPa}$. Ref. ${ }^{12}$, b.p. $130-134 \cdot 5^{\circ} \mathrm{C} / 0 \cdot 17 \mathrm{kPa}$ (different synthetic procedure).

1-(2-Methoxyphenyl)piperazine

A mixture of 61.6 g 2 -anisidine, $300 \mathrm{ml} \mathrm{1-butanol}, 98.3 \mathrm{~g}$ bis-(2-chloroethyl)amine hydrochloride ${ }^{15,16}$, and $34.6 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{CO}_{3}$ was stirred and refluxed for 20 h . Further $34.6 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ were added, 40 ml 1-butanol were distilled off and the residue was heated for 5 h to $130^{\circ} \mathrm{C}$ (bath temperature). Most of the 1 -butanol was evaporated in vacuo and the cooled residue was treated with $200 \mathrm{ml} 2 \cdot 5 \mathrm{~m}-\mathrm{NaOH}$. The oily product was extracted with ether, the extract was processed and the residue was distilled; $56 \cdot 5 \mathrm{~g}(59 \%)$, b.p. $124^{\circ} \mathrm{C} / 0 \cdot 1 \mathrm{kPa} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1 \cdot 65 \mathrm{~s}$, $1 \mathrm{H}(\mathrm{NH}) ; 3.04 \mathrm{~s}, 8 \mathrm{H}\left(4 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.85 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.90 \mathrm{~s}, 4 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (192.3) calculated: $68.71 \% \mathrm{C}, 8.39 \% \mathrm{H}, 14.57 \% \mathrm{~N}$; found: $68.44 \% \mathrm{C}, 8.59 \% \mathrm{H}, 14.58 \% \mathrm{~N}$. Ref. ${ }^{17}$, b.p. $130-133^{\circ} \mathrm{C} / 13 \mathrm{~Pa}$ (different synthetic procedure).

Dihydrochloride, m.p. $212-215^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ (265•2) calculated: $26 \cdot 74 \%$ $\mathrm{Cl}, 10 \cdot 57 \% \mathrm{~N}$; found: $26 \cdot 50 \% \mathrm{Cl}, 10 \cdot 93 \% \mathrm{~N}$.
Table II
UV, IR and ${ }^{1} \mathrm{H}$ NMR spectra of compounds $I I a-I I l$

Compound	Spectrum	Data
IIa	UV	264 (4.C0), 326 (3.62)
	IR	830, 860 (2 adjacent and solitary Ar-H); $1140,1152,1310\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1250\left(\mathrm{ArOCH}_{3}\right) ; 1550,1633$ (ArCONHR); $3290,3580\left(\mathrm{NH}_{2}\right)$
IIb	UV	231 (4.17), 288 (3.34)
	IR	840, 885 (2 adjacent and solitary Ar-H); 1185, $1340\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1240,1290\left(\mathrm{ArOCH}_{3}\right) ; 1484,1590$ (Ar); 1 550, 1618 (ArCONHR); 3 100, $3280,3370\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$1.50 \mathrm{bm}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ in positions $3,4,5$ of piperidine); $1 \cdot 70 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl); $2.30 \mathrm{bm}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the piperidine N$) ; 3.30 \mathrm{~m}, 2 \mathrm{H}$ (the remaining $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 3.94 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{OCH}_{3}\right) ; 7.20 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-3$ of benzoyl, $J=8.0) ; 7.25 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.82 \mathrm{dd}, 1 \mathrm{H}$ (H-4 of benzoyl, $J=8.0 ; 2.0) ; 8.10 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-6$ of berizoyl, $J=2.0) ; 8.18 \mathrm{bt}, 1 \mathrm{H}$ (CONH)
IIC	UV	233 (4-12), 289 (3.33)
	IR	840, 870 (2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1111(\mathrm{C}-\mathrm{O}-\mathrm{C}) ; 1242\left(\mathrm{ArOCH}_{3}\right) ; 1170,1340\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right)$; 1 481, 1586 (Ar); 1 550, 1617 (ArCONHR); 3 100, 3240,3370 ($\mathrm{NH}, \mathrm{NH}_{2}$)
	${ }^{1} \mathrm{H}$ NMR	$1.70 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl); $2.45 \mathrm{bm}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the morpholine N$) ; 3.30 \mathrm{~m}$, 2 H (remaining $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 3.60 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$ of morpholine); $3.94 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 7.20 \mathrm{~d}, 1 \mathrm{H}$ ($\mathrm{H}-3$ of benzoyl, $J=8.0$); $7.25 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.82 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl, $J=8.0 ; 2.0) ; 8.10 \mathrm{~d}$, 1 H (H-6 of benzoyl, $J=2.0$); $8.22 \mathrm{bt}, 1 \mathrm{H}$ (CONH)
IId $-\mathrm{HH}^{\text {a }}$	UV	263 (4.03), 322 (3.64)
	IR	840, 880, 900 (2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1143, $1310\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1240\left(\mathrm{ArOCH}_{3}\right) ; 1560(\mathrm{Ar}) ; 1610$, $2700-3200\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3140,3315\left(\mathrm{NH}_{2}\right)$
IIe	UV	239 (4.38), 287 (3.54)
	IR	688, 752, 805, 827, 863, 880 (5 and 2 adjacent and solitary Ar-H); 1125, $1150,1170,1330\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1500$, 1592 (Ar); 1532, 1630 (ArCONHR); $3160,3368\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$1.70 \mathrm{bm}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl; $2 \cdot 50 \mathrm{bm}, 6 \mathrm{H}\left(3 \mathrm{CH}_{2}\right.$ around the piperazine $\left.\mathrm{N}^{1}\right) ; 3.10 \mathrm{bm}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ ot piperazine); $3.40 \mathrm{bm}, 2 \mathrm{H}$ (remaining $\mathrm{CH}_{2} \mathrm{~N}$); $3.90 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.60-7.30 \mathrm{~m}, 6 \mathrm{H}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\mathrm{H}-3$ of benzoyl); $7.30 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.88 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl, $J=8.5 ; 2.0) ; 8.20 \mathrm{~d}, 1 \mathrm{H}$ ($\mathrm{H}-6$ of benzoyl, $J=2.0$) ; $8.28 \mathrm{bt}, 1 \mathrm{H}(\mathrm{CONH}, J=5.0)$

235 （4．28）， 284 （3．43）
761，849， 890 （ 4 and 2 adjacent and solitary Ar－H）；1140， $1340\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1229,1241\left(\mathrm{ArOCH}_{3}\right) ; 1490$ ， 1591,3075 （Ar）； 1535,1630 （ArCONHR）； 3380 （ $\mathrm{NH}, \mathrm{NH}_{2}$ ）
$1.75 \mathrm{bm}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl）； $2.20 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{ArCH}_{3}\right) ; 2.50 \mathrm{bm}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the piperazine N^{1} ）； $2.80 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine）； $3.35 \mathrm{~m}, 2 \mathrm{H}$（remaining $\mathrm{CH}_{2} \mathrm{~N}$ ）； $3.94 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right)$ ； $7 \cdot \mathrm{Com}, 4 \mathrm{H}\left(4 \times \mathrm{ArH}\right.$ of tolyl）； $7.20 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-3$ of benzoyl，$J=8.0) ; 7.28 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7 \cdot 84 \mathrm{dd}, 1 \mathrm{H}$ （H－4 of benzoyl，$J=8.0 ; 2 \cdot 0$ ）； $8.15 \mathrm{~d}, 1 \mathrm{H}$（H－6 of benzoyl，$J=2 \cdot 0$ ）； $8.22 \mathrm{bt}, 1 \mathrm{H}$（CONH）

$$
238(4 \cdot 41), 287 \cdot 5(3 \cdot 54)
$$

S00，810，830， $860\left(2\right.$ adjacent and solitary Ar－H）；1168， $1340\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1240\left(\mathrm{ArOCH}_{3}\right) ; 1480,1510$ ， $1595,3030,3054,3095(\mathrm{Ar}) ; 3240,3380\left(\mathrm{NH}_{2}\right)$
$1.75 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl）； $2.18 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{ArCH}_{3}\right) ; 2.50 \mathrm{bm}, 6 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right.$ around the $\left.\mathrm{H}_{2} \mathrm{~N}\right) ; 7.20 \mathrm{~d}, 1 \mathrm{H}$ （ $\mathrm{H}-3$ of benzoyl，$J=8.0$ ）； $7.26 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.82 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl，$J=8.0 ; 2.0) ; 8.14 \mathrm{~d}, 1 \mathrm{H}$
$(\mathrm{H}-6$ of benzoyl，$J=2 \cdot 0) ; 8.20 \mathrm{bt}, 1 \mathrm{H}(\mathrm{CONH})$ $238(4 \cdot 43), 287 \cdot 5(3 \cdot 55)$
$826,841,888\left(2\right.$ adjacent and solitary Ar－H）；1187， $1189,1340\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1241\left(\mathrm{ArOCH}_{3}\right) ; 1513,1590$ （Ar）； 1 550， 1620 （ArCONHR）； $2773,2810\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 3115,3275,3370\left(\mathrm{NH}_{2}\right)$
$1.11 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ of ethyl，$\left.J=7 \cdot 0\right) ; 1 \cdot 70 \mathrm{bm}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl）； $2.50 \mathrm{bm}, 8 \mathrm{H}$ （ $3 \times \mathrm{CH}_{2}$ around the piperazine N^{1} and ArCH_{2} ）； $3.02 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine）； $3.40 \mathrm{~m}, 2 \mathrm{H}$ （remaining $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 3.90 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.88 \mathrm{~d}$ and $7.00 \mathrm{~d}(\mathrm{ABq}), 2$ and $2 \mathrm{H}(4 \times \mathrm{ArH}$ of ethylphenyl， $J=9 \cdot 0) ; 7 \cdot 20 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-3$ of benzoyl，$J=9.0) ; 7 \cdot 30 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.88 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl， $J=9 \cdot 0 ; 2 \cdot 5) ; 8.18 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-6$ of benzoyl，$J=2 \cdot 5) ; 8.28 \mathrm{bt}, 1 \mathrm{H}(\mathrm{CONH}, J=5.0)$ 240 （4．35）， 289 （3．63） 30 $\underline{\underline{2}}$
${ }^{1} \mathrm{H}$ NMR
\cong
${ }^{1} \mathrm{H}$ NMR

$3 \cong$

S	

$3 \cong$

HN

Compound	Spectrum	Data
IIj	UV IR ${ }^{1} \mathrm{H}$ NMR	$283 \cdot 5$ (saturated solution) 759, 817, 865 (4 and 2 adjacent and solitary Ar-H); 1170, $1339\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1244\left(\mathrm{ArOCH}_{3}\right) ; 1492$ (Ar); 1 533, 1 638, 1695 (ArCONHR); 3 180, 3393 (NH, NH ${ }_{2}$) $1.70 \mathrm{bm}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl); $2.50 \mathrm{bm}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the piperazine $\left.\mathrm{N}^{1}\right) ; 2.95 \mathrm{bm}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine); $3.35 \mathrm{bm}, 2 \mathrm{H}$ (remaining $\mathrm{CH}_{2} \mathrm{~N}$); 3.68 s and $3.92 \mathrm{~s}, 3$ and $3 \mathrm{H}\left(2 \mathrm{ArOCH}_{3}\right)$; $6.90 \mathrm{bs}, 4 \mathrm{H}\left(4 \mathrm{ArH}\right.$ of o-methoxyphenyl); $7.25 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-3$ of benzoyl, $J=9 \cdot 0) ; 7 \cdot 30 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right)$; $7 \cdot 90 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl, $J=9 \cdot 0 ; 2 \cdot 5) ; 8 \cdot 20 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-6$ of benzoyl, $J=2 \cdot 5) ; 8 \cdot 30 \mathrm{bt}, 1 \mathrm{H}$ (CONH)
IIk	UV IR (KBr) ${ }^{1} \mathrm{H}$ NMR	infl. 236 (4.35), 287 (3.73) 827, $882(\mathrm{Ar}-\mathrm{H}) ; 1170,1332\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 1249\left(\mathrm{ArOCH}_{3}\right) ; 1494,1572,1$ 592, 1605 (Ar); 1535, 1629 (ArCONHR); $2815\left(\mathrm{ArOCH}_{3}\right) ; 3140,3370\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$ $1.71 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl); $2.50 \mathrm{~m}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the piperazine $\left.\mathrm{N}^{1}\right) ; 3.10 \mathrm{bm}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine); $3.39 \mathrm{~m}, 2 \mathrm{H}$ (remaining $\mathrm{CH}_{2} \mathrm{~N}$); 3.69 s and $3.92 \mathrm{~s}, 3$ and $3 \mathrm{H}\left(2 \mathrm{ArOCH}_{3}\right)$; $6.40 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-4$ and $\mathrm{H}-6$ of m-methoxyphenyl); $7 \cdot 10 \mathrm{~m}, 1 \mathrm{H}$ ($\mathrm{H}-5$ of m-methoxyphenyl); $7.25 \mathrm{~d}, 1 \mathrm{H}$ ($\mathrm{H}-3$ of benzoyl, $J=9.0$); $7.30 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ; 7.90 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl, $J=9.0 ; 2.5) ; 8.21 \mathrm{~d}, 1 \mathrm{H}$ ($\mathrm{H}-6$ of benzoyl, $J=2 \cdot 5$); $8.29 \mathrm{bt}, 1 \mathrm{H}$ (CONH)
III	UV IR ${ }^{1} \mathrm{H}$ NMR	238 (4.44), 291 (4.C9) 814, 882 (2 adjacent and solitary Ar-H); 1010, $1243\left(\mathrm{ArOCH}_{3}\right) ; 1159,1$ 171, $1333\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right)$; 1513, 1 594, 3 040, 3080 (Ar); 1 537, 1632 (ArCONHR); 3 150, 3375 (NH) $1.70 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in position 2 of propyl); $2.48 \mathrm{~m}, 6 \mathrm{H}\left(3 \times \mathrm{CH}_{2}\right.$ around the piperazine $\left.\mathrm{N}^{1}\right) ; 3.00 \mathrm{~m}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine); $3.30 \mathrm{~m}, 2 \mathrm{H}$ (remaining $\mathrm{CH}_{2} \mathrm{~N}$); 3.65 s and $3.91 \mathrm{~s}, 3$ and $3 \mathrm{H}\left(2 \mathrm{ArOCH}_{3}\right)$; $6.80 \mathrm{~s}, 4 \mathrm{H}\left(4 \times \mathrm{ArH}\right.$ of p-methoxyphenyl); $7.25 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-3$ of benzoyl, $J=8.5) ; 7.30 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right) ;$ $7.87 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-4$ of benzoyl, $J=8.5 ; 2.0) ; 8.15 \mathrm{~d}, 1 \mathrm{H}$ (H-6 of benzoyl, $J=2.0) ; 8.21 \mathrm{bt}, 1 \mathrm{H}$ (CONH)

${ }^{a} \mathrm{HH}$ hemihydrate.

1-(3-Methoxyphenyl)piperazine

A similar reaction of 61.6 g 3-anisidine with $89 \cdot 3 \mathrm{~g}$ bis(2-chloroethyl)amine hydrochloride ${ }^{\mathbf{1 5}, 16}$ and $34.6 \mathrm{~g}+34.6 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ in 300 ml 1-butanol gave $61.5 \mathrm{~g}(67 \%)$ of the product, b.p. $130^{\circ} \mathrm{C} /$ $67 \mathrm{~Pa} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1.65 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH}) ; 3.00 \mathrm{~m}, 8 \mathrm{H}\left(4 \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.78 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{OCH}_{3}\right) ; 6.45 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-6) ; 7.15 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5)$. For $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (192.3) calculated: $68.71 \% \mathrm{C}, 8.39 \% \mathrm{H}, 14.57 \% \mathrm{~N}$; found: $68.61 \% \mathrm{C}, 8.54 \% \mathrm{H}, 14.73 \%$ N. Ref. ${ }^{19}$, b.p. $140-145^{\circ} \mathrm{C} /$ 33 Pa .

1-i4-Methoxyphenyl)piperazine

A similar reaction of 37.0 g 4 -anisidine with 53.5 g bis(2-chloroethyl)amine hydrochloride ${ }^{15,16}$ and $20.8 \mathrm{~g}+10.4 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ in 200 ml 1-butanol gave $34.5 \mathrm{~g}(60 \%)$ of the product, b.p. $118^{\circ} \mathrm{C} /$ 40 Pa, m.p. $82-86^{\circ} \mathrm{C}$ (cyclohexane-light petroleum). ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): 1 \cdot 90 \mathrm{bs}, 1 \mathrm{H}$ $(\mathrm{NH}) ; 2.95 \mathrm{~s}, 8 \mathrm{H}\left(4 \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.80 \mathrm{~s}, 4 \mathrm{H}(\mathrm{ArH})$.

Monohydrochloride, m.p. 211-212 ${ }^{\circ} \mathrm{C}$ (ethanol). UV spectrum: 241 (4.06), $295 \cdot 5$ (3.27). IR spectrum: 825 (2 adjacent $\mathrm{Ar}-\mathrm{H}$); 1 190, $1240\left(\mathrm{ArOCH}_{3}\right) ; 1510,1$ 590, 1 610, 3065,3105 (Ar); 2 500, 2 628, $2700\left(\mathrm{NH}_{2}^{+}\right) ; 3190(\mathrm{NH})$. For $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}$ (228.7) calculated: $57 \cdot 76 \% \mathrm{C}$, $7 \cdot 49 \% \mathrm{H}, 15 \cdot 50 \% \mathrm{Cl}, 12 \cdot 25 \% \mathrm{~N}$; found: $57 \cdot 78 \% \mathrm{C}, 7 \cdot 38 \% \mathrm{H}, 15 \cdot 67 \% \mathrm{Cl}, 12 \cdot 52 \% \mathrm{~N}$. Prelog and Blažek ${ }^{20}$ described the hydrobromide, obtained by a different synthetic procedure.

3-(4-(4-Ethylphenyl)-1-piperazinyl)propionitrile (IVh)

Stirred 1-(4-ethylphenyl)piperazine (47.6 g) was treated at $30^{\circ} \mathrm{C}$ with 14.9 g acrylonitrile, added dropwise over 15 min . The temperature of the mixture rose spontaneously to $55^{\circ} \mathrm{C}$, the mixture was stirred for 2 h and allowed to stand overnight at room temperature. The precipitated IVh was filtered; $60 \cdot 5 \mathrm{~g}$ (99%), m.p. $60-61^{\circ} \mathrm{C}$ (ethanol). UV spectrum: $247 \cdot 5$ (4.12), $286 \cdot 5$ (3.14). IR spectrum: 825, 832 (2 adjacent Ar-H); 1510, 1 609, 3025 (Ar); 2243 (RCN); 2 695, 2740 $\left(\mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1 \cdot 19 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=7 \cdot 0\right) ; 2 \cdot 30-2 \cdot 80 \mathrm{~m}, 10 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1}\right.$. $. \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ and $\left.\mathrm{ArCH}_{2}\right) ; 3.15 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right) ; 6.81 \mathrm{~d}, 2 \mathrm{H}(\mathrm{H}-2$ and H-6, $J=9.0) ; 7 \cdot 10 \mathrm{~d}, 2 \mathrm{H}(\mathrm{H}-3$ and $\mathrm{H}-5)$. For $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3}$ (243.4) calculated: $74.03 \% \mathrm{C}, 8.70 \% \mathrm{H}$, $17 \cdot 27 \% \mathrm{~N}$; found: $74.31 \% \mathrm{C}, 8.46 \% \mathrm{H}, 16.98 \% \mathrm{~N}$.

3-14-(2-Methoxyphenyl)-1-piperazinyl)propionitrile (IVj)

A similar reaction of 38.5 g 1 -(2-methoxyphenyl)piperazine and 11.7 g acrylonitrile gave 44.8 g $\left(91 \%\right.$) of $I V j$, m.p. $80 \cdot 5-81 \cdot 5^{\circ} \mathrm{C}$ (benzene-cyclohexane). IR spectrum: 750, 760, 770 (4 adjacent $\mathrm{Ar}-\mathrm{H}) ; 1240\left(\mathrm{ArOCH}_{3}\right) ; 1$ 500, 1 591, 3050,3075 (Ar); 2245 (RCN); 2685, 2735 (ArOCH3, $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 2.65 \mathrm{~m}, 8 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ; 3.10 \mathrm{~m}$, $4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right) ; 3.85 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.90 \mathrm{bm}, 4 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}(245 \cdot 3)$ calculated: $68.54 \% \mathrm{C}, 7.81 \% \mathrm{H}, 17 \cdot 13 \% \mathrm{~N}$; found: $68.29 \% \mathrm{C}, 7 \cdot 89 \% \mathrm{H}, 17 \cdot 43 \%$ N. Ref. ${ }^{18}$, m.p. $86-87^{\circ} \mathrm{C}$ (different synthetic method).

3-(4-(3-Methoxyphenyl)-1-piperazinyl)propionitrile (IVk)

A similar reaction of $53.8 \mathrm{~g} \mathrm{1-(3-methoxyphenyl)piperazine} \mathrm{and} 16.5 \mathrm{~g}$ acrylonitrile gave $66 \cdot 7 \mathrm{~g}$ (97%) of $I V k$, m.p. $102-104^{\circ} \mathrm{C}$ (benzene-cyclohexane). IR spectrum: 697, 774, 834, 860 (3 adja cent and solitary $\mathrm{Ar}-\mathrm{H}) ; 1$ 173, $1200,1211\left(\mathrm{ArOCH}_{3}\right) ; 1$ 490, 1 580, 1601 (Ar); 2 690, 2 754, $2788\left(\mathrm{ArOCH}_{3}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{N}\right) ; 2240(\mathrm{RCN}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): 2 \cdot 60 \mathrm{~m}, 8 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1}\right.$.
. CH_{2} and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ; 3.20 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right) ; 3.79 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.40 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-2$, $\mathrm{H}-4$ and $\mathrm{H}-6$); $7 \cdot 15 \mathrm{~m}, 1 \mathrm{H}$ (H-5 of methoxyphenyl). Ref. ${ }^{18}$, m.p. 103-105 ${ }^{\circ} \mathrm{C}$ (different method).

3-(4-(4-Methoxyphenyl)-1-piperazinyl)propionitrile (IVI)
A similar reaction of $32.6 \mathrm{~g} \mathrm{1-(4-methoxyphenyl)piperazine} \mathrm{and} 10 \cdot 1 \mathrm{~g}$ acrylonitrile gave 39.4 g (94%) of IVl , m.p. $78-79^{\circ} \mathrm{C}$ (aqueous ethanol). IR spectrum: 833 (2 adjacent $\mathrm{Ar}-\mathrm{H}$); 1224, $1243,1280,1298\left(\mathrm{ArOCH}_{3}\right) ; 1510,3010,3040,3100(\mathrm{Ar}), 2242(\mathrm{RCN}) ; 2705\left(\mathrm{CH}_{2} \mathrm{~N}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 2.65 \mathrm{~m}, 8 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ; 3 \cdot 10 \mathrm{~m}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right) ; 3 \cdot 75 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.85 \mathrm{~s}, 4 \mathrm{H}(\mathrm{ArH})$. Ref. ${ }^{11}$, m.p. $80-81 \cdot 5^{\circ} \mathrm{C}$.
3-(4-(4-Methylphenyl)-1-piperazinyl)propylamine (IIIg)

A solution of $38.0 \mathrm{~g} \operatorname{IVg}\left(\right.$ ref. 10) in 580 ml ether was added dropwise over 45 min to a stirred solution of $7 \cdot 1 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 100 ml ether and the mixture was refluxed for 9 h . After cooling it was decomposed under stirring and external cooling by slow addition of $7 \cdot 1 \mathrm{ml}$ water, $7 \cdot 1 \mathrm{ml}$ $20 \% \mathrm{NaOH}, 14 \cdot 2 \mathrm{ml}$ water, and $7 \cdot 1 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$. After standing for 30 min the solid was filtered off and the filtrate was processed by distillation; $27 \cdot 6 \mathrm{~g}\left(70 \%\right.$) of $I I I g$, b.p. $156-160^{\circ} \mathrm{C} / 80 \mathrm{~Pa}$. Ref. ${ }^{11}$, b.p. $158-162^{\circ} \mathrm{C} / 0 \cdot 12-0.19 \mathrm{kPa}$ (different synthetic method).

3-(4-(4-Ethylphenyl)-1-piperazinyl)propylamine (IIIh)

Similar reduction of $60 \mathrm{~g} I \mathrm{Vh}$ with $11.5 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 700 ml ether gave $43.0 \mathrm{~g}(71 \%)$ of $I I I h$, b.p. $160^{\circ} \mathrm{C} / 67 \mathrm{~Pa} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1 \cdot 11 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=7 \cdot 0\right) ; 1 \cdot 28 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right)$; $1.60 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 2.20-2.80 \mathrm{~m}, 10 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}\right.$ and $\left.\mathrm{ArCH}_{2}\right)$; $3.05 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right) ; 6.72 \mathrm{~d}, 2 \mathrm{H}(\mathrm{H}-2$ and $\mathrm{H}-6, J=9.0) ; 6.99 \mathrm{~d}, 2 \mathrm{H}(\mathrm{H}-3$ and $\mathrm{H}-5$, $J=9 \cdot 0$). For $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3}(247 \cdot 4)$ calculated: $72 \cdot 82 \% \mathrm{C}, 10 \cdot 19 \% \mathrm{H}, 16.99 \% \mathrm{~N}$; found: $73.08 \% \mathrm{C}$, $9.98 \% \mathrm{H}, 16 \cdot 69 \% \mathrm{~N}$.

Mon ppicrate, m.p. $163-165^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{7}$ (476.5) calculated: $52.93 \% \mathrm{C}$, $5.92 \% \mathrm{H}, 17 \cdot 64 \% \mathrm{~N}$; found: $53 \cdot 12 \% \mathrm{C}, 5 \cdot 92 \% \mathrm{H}, 17 \cdot 55 \% \mathrm{~N}$.

Trihydrochloride, m.p. 203-205 ${ }^{\circ} \mathrm{C}$ (ethanol-ether). For $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~N}_{3}$ (356.8) calculated: $50.49 \% \mathrm{C}, 7.91 \% \mathrm{H}, 29 \cdot 81 \% \mathrm{Cl}, 11 \cdot 78 \% \mathrm{~N}$; found: $50 \cdot 74 \% \mathrm{C}, 7 \cdot 94 \% \mathrm{H}, 29 \cdot 78 \% \mathrm{Cl}, 12 \cdot 04 \% \mathrm{~N}$.

3-(4-(3-Chlorophenyl)-1-piperazinyl)prcpylamine (IIIi)

Similar reduction of 57.1 g IVi (ref. ${ }^{10}$) with $12.5 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 400 ml ether gave $35.7 \mathrm{~g}(63 \%)$ of IIII, b.p. $179^{\circ} \mathrm{C} / 0 \cdot 12 \mathrm{kPa} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1 \cdot 65 \mathrm{~m}, 2 \mathrm{H}\left(\mathbf{C H}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}\right) ; 2 \cdot 20 \mathrm{bs}$, $2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 2.30-2.90 \mathrm{~m}, 8 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 3.15 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right)$; $6.50-7.20 \mathrm{~m}, 4 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClN}_{3}(253.8)$ calculated: $61.52 \% \mathrm{C}, 7.94 \% \mathrm{H}, 13.97 \% \mathrm{Cl}$, $16.56 \% \mathrm{~N}$; found: $61.84 \% \mathrm{C}, 7.66 \% \mathrm{H}, 13.67 \% \mathrm{Cl}, 16 \cdot 54 \% \mathrm{~N}$. Ref. ${ }^{14}$, b.p. $150-154^{\circ} \mathrm{C} / 5 \mathrm{~Pa}$ (different method).

3-(4-(2-Methoxyphenyl)-1-piperazinyl)propylamine (IIIj)

Similar reduction of 44.0 g IVj with $8.6 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 650 ml ether gave $24.9 \mathrm{~g}(56 \%)$ of $I I I j$, b.p. $152-155^{\circ} \mathrm{C} / 80 \mathrm{~Pa}$. Refs ${ }^{14,18}$, b.p. $151-154^{\circ} \mathrm{C} / 9 \mathrm{~Pa}$ and $140-155^{\circ} \mathrm{C} / 20 \mathrm{~Pa}$, respectively.

Trihydrochloride, m.p. 194-197 ${ }^{\circ} \mathrm{C}$ (ethanol- $5 \mathrm{~m}-\mathrm{HCl}$). For $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$ (358.7) calculated $46.87 \% \mathrm{C}, 7.31 \% \mathrm{H}, 29.65 \% \mathrm{Cl}, 11.71 \% \mathrm{~N}$; found: $47.09 \mathrm{C}, 7.44 \% \mathrm{H}, 29.56 \% \mathrm{Cl}, 11 \cdot 72 \% \mathrm{~N}^{\text {: }}$

3-(4-(3-Methoxyphenyl)-1-piperazinyl)propylamine (IIIk)
Similar reduction of $66.5 \mathrm{~g} I V k$ with $14.0 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 800 ml ether gave $43.9 \mathrm{~g}(65 \%)$ of IIIk, b.p. $173-175^{\circ} \mathrm{C} / 80 \mathrm{~Pa}$. Ref. ${ }^{18}$, b.p. $155-165^{\circ} \mathrm{C} / 20 \mathrm{~Pa}$.

Trihydrochloride, m.p. $172-175^{\circ} \mathrm{C}$ (ethanol-hydrochloric acid). For $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$ (358.7) calculated: $46 \cdot 87 \% \mathrm{C}, 7.31 \% \mathrm{H}, 29 \cdot 65 \% \mathrm{Cl}, 11 \cdot 71 \% \mathrm{~N}$; found: $46 \cdot 85 \% \mathrm{C}, 7 \cdot 20 \% \mathrm{H}, 29 \cdot 31 \% \mathrm{Cl}$, $11 \cdot 90 \% \mathrm{~N}$.

3-(4-(4-Methoxyphenyl)-1-piperazinyl)propylamine (IIIl)

Similar reduction of 38.7 g IVl with $7.6 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 650 ml ether gave $25.4 \mathrm{~g}(64 \%)$ of $I I I I$, b.p. $165-168^{\circ} \mathrm{C} / 67 \mathrm{~Pa}$. Ref. ${ }^{11}$, b.p. $166-169^{\circ} \mathrm{C} / 26 \mathrm{~Pa}$ (different method of reduction).

Trihydrochloride, m.p. $250-254^{\circ} \mathrm{C}$ with decomposition (ethanol-hydrochloric acid). For $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}(358 \cdot 8)$ calculated: $\mathbf{4 6} \cdot 87 \% \mathrm{C}, 7 \cdot 31 \% \mathrm{H}, 29 \cdot 65 \% \mathrm{Cl}, 11 \cdot 71 \% \mathrm{~N}$; found: $\mathbf{4 7} \cdot 27 \% \mathrm{C}$, $7 \cdot 45 \% \mathrm{H}, 29 \cdot 36 \% \mathrm{Cl}, 11 \cdot 88 \% \mathrm{~N}$.

N-(3-(4-Phenyl-1-piperazinyl)propyl)-5-sulfamoyl-2-methoxybenzamide (IIe)
(General method)
A mixture 13.0 g ethyl 5 -sulfamoyl-2-methoxybenzoate ${ }^{1,5}$ and 11.0 g IIIe (ref. ${ }^{9}$) was stirred and heated for 14 h to $100^{\circ} \mathrm{C}$. The solidified melt was disintegrated by refluxing with 1 C 0 ml ethanol for 1 h and after cooling the precipitated product was filtered, washed with ethanol, and dried in vacuo; $13.5 \mathrm{~g}(63 \%)$ of IIe, m.p. $220-221^{\circ} \mathrm{C}$ (dimethylformamide-ethanol). For analysis and spectra, cf. Tables I and II.

Methanesulfonate, m.p. $221-223^{\circ} \mathrm{C}$ (ethanol-ether), was prepared by neutralization with methanesulfonic acid in boiling ethanol and cooling of the solution obtained. The analysis is included in Table I.

The authors wish to thank their colleagues at the Research Institute for Pharmacy and Biochemistry for their contributions to the present study: Mrs J. Komancová, Mrs V. Šmidová, and Mrs J. Kropácová (elemental analyses); Mrs A. Hrádková and Mrs E. Smetanová (recording of the UV and IR spectra); Dr S. Wildt (acute toxicities).

REFERENCES

1. Valenta V., Protiva M.: Collect. Czech. Chem. Commun. 52, 2095 (1987).
2. Eckman F.: Arzneim.-Forsch. 24, 993 (1974).
3. Metyšová J., Valchář M.: Activ. Nerv. Super. 26, 27 (1984).
4. Bulteau G., Acher J., Monier J. C. (Societe d'Etudes Scientifiques et Industrielles de l'Ile-de--France): Ger. Offen $2,409,386 ; 2,409,387 ; 2,409,391 ; 2,409,892 ; 2,417,866 ;$ Chem. Abstr. 82, 4113, 4114, 4116, 4118, 31249 (1975).
5. Yousef A. F., Abou-Ouf A. A., El-Gendy M. A.: Acta Chim. Hung. 69, 81 (1971).
6. Valenta V., Vlková M., Holubek J., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 54, 1979 (1989).
7. Aroyan A. A., Arshakyan R. S., Ovsepyan T. R.: Izv. Akad. Nauk Arm. SSR 16, 277 (1963).
8. Ueda T., Ishizaki K.: Chem. Pharm. Bull. 15, 228 (1967).
9. Protiva M., Valenta V., Trčka V., Hladovec J., Němec J.: Collect. Czech. Chem. Commun. 42, 3628 (1977).

[^1]10. Pollard C. B., Rietz E. G., Robbins R.: J. Am. Chem. Soc. 75, 2989 (1953).
11. Hayao S., Schut R. N.: J. Org. Chem. 26, 3414 (1961).
12. Kiritsy J. A., Yung D. K., Mahony D. E.: J. Med. Chem. 21, 1301 (1978).
13. Pollard C. B., Wicker T. H. jr: J. Am. Chem. Soc. 76, 1853 (1954).
14. De Antoni J. J. P. (Laboratoires Bruneau et Cie): U.S. 3,375,248; Chem. Abstr. 69, 96755 (1958).
15. Poplavskaya I. A., Goryaev M. I.: Zh. Obshch. Khim. 33, 295 (1963); Chem. Abstr. 59, 431 (1963).
16. Abou Zeid Y. M., Gabali E. N.: Egypt. Pharm. Bull. 42 (4), 341 (1960); Chem. Abstr. 59, 2697 (1963).
17. Pollard C. B., Christie J. B.: J. Org. Chem. 23, 1333 (1958).
18. Wu Y.-H., Smith K. R., Rayburn J. W., Kissel J. W.: J. Med. Chem. 12, 876 (1969).
19. Jain P. C., Kapoor V., Anand N., Ahmad A., Patnaik G. P.: J. Med. Chem. 10, 812 (1967).
20. Prelog V., Blažek Z.: Collect. Czech. Chem. Commun. 6, 220 (1934).

Translated by the author (M.P.).

[^0]: ${ }^{a}$ BHO bis(hydrogen oxalate), HFU hemifumarate, HH hemihydrate, MS methanesulfonate;
 ${ }^{b}$ crude product; ${ }^{c}$ see Experimental; ${ }^{d}$ crystallized only after chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activity II).

[^1]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

